学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告21:丁煜宸 — Romanoff type representations

时间:2024-04-11 作者: 点击数:

报告时间:2024年4月11日(星期四)15:00

报告地点:翡翠科教楼B1710

报  告  人:丁煜宸博士

工作单位:扬州大学

举办单位:数学凯旋娱乐(中国)有限公司

报告简介:

Motivated by a 1849 conjecture of de Polignac (actually dating by to Euler in a 1752 letter of Goldbach), Romanoff proved in 1934 that there is positive lower asymptotic of odd numbers which can be written as the sum of a prime and a power of 2. In 1950, Erdos constructed an arithmetic progression none of whose members could be written as the above form. Since then, the Romanoff type representations drew common attentions to the mathematical community. In this talk, we first introduce the history as well as some developments involving with these representations. After that, two conjectures of Y.-G. Chen and two problems of Y.-G. Chen & Q.-H. Yang will be discussed in details. As an end, some open problems and conjectures are highlighted.

报告人简介:

丁煜宸,博士毕业于南京大学数学系,现为扬州大学讲师。研究方向为数论,特别是素数定理在组合数论中的应用以及与Erdos有关的若干问题。从2017年至今,报告人已在Q. J. Math., Proc. Amer. Math. Soc., Acta Arith., Journal of Number Theory等学术杂志接收或发表30篇论文。报告人目前正主持国家自然科学基金青年项目,江苏省自然科学基金青年项目,中国博士后面上项目。

上一篇:学术报告22:方文杰 — Bijective link between Chapoton's new intervals and bipartite planar map

下一篇:学术报告20:吕长虹 — A bridge between the double resolving problem of graphs and the coin-weighing problem